Remembering for the Right Reasons: Explanations Reduce
Catastrophic Forgetting
Sayna Ebrahimi, Suzanne Petryk, Akash Gokul, William Gan, Joseph E. Gonzalez, Marcus Rohrbach, trevor darrell
ICLR 2021
Yann LeCun, et al. Optimal brain damage. NIPS. 1990.
Babak Hassibi, et al. Second order derivatives for network pruning: Optimal brain surgeon. NIPS. 1993.
Song Han, et al. Learning both weights and connections for efficient neural network. NIPS. 2015.
Hao Zhou, et al. Less is more: Towards compact cnns. ECCV. 2016.
Song Han, et al. “Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding.” ICLR. 2016
Tien-Ju Yang, et al. Designing energy-efficient convolutional neural networks using energy-aware pruning. CVPR. 2017
Jian-Hao Luo, et al. Thinet: A filter level pruning method for deep neural network compression. ICCV. 2017
Zhuang Liu, et al. Learning efficient convolutional networks through network slimming. ICCV. 2017.
Yihui He, et al. Channel pruning for accelerating very deep neural networks. ICCV. 2017.
Hao Li, et al. Pruning filters for efficient convnets. ICLR. 2017
Pavlo Molchanov, et al. Pruning Convolutional Neural Networks for Resource Efficient Inference. ICLR. 2017
Zhuang Liu, et al. Rethinking the value of network pruning. ICLR. 2019.
Chaoqi Wang, et al. Picking winning tickets before training by preserving gradient flow. ICLR. 2020
Jonathan Frankle, et al. The early phase of neural network training. ICLR. 2020.
Haoran You, et al. Drawing early-bird tickets: Toward more efficient training of deep networks. ICLR. 2020.
Alex Renda, et al. Comparing rewinding and fine-tuning in neural network pruning. ICLR. 2020.
Jonathan Frankle, et al. Linear Mode Connectivity and the Lottery Ticket Hypothesis. ICML. 2020.
Pedro Savarese, et al. Winning the lottery with continuous sparsification. NIPS. 2020.
1 | 先进入到如下目录 |
之后所有的实验都将在 fabric_lab
目录下进行。
将 cryptogen
、configtxgen
等加入到环境变量
1 | 使用export命令 |
阿里云 轻量应用服务器 Ubuntu 16.04.6
Hyperledger Fabric 依赖的软件版本查看 官方 github 地址 下文件 /docs/source/prereqs.rst
,软件版本要求根据安装的 Fabric 的版本差异而略有不同。