Reading List: Papers on Pruning

1990

Yann LeCun, et al. Optimal brain damage. NIPS. 1990.

1993

Babak Hassibi, et al. Second order derivatives for network pruning: Optimal brain surgeon. NIPS. 1993.

2015

Song Han, et al. Learning both weights and connections for efficient neural network. NIPS. 2015.

2016

Hao Zhou, et al. Less is more: Towards compact cnns. ECCV. 2016.

Song Han, et al. “Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding.” ICLR. 2016 

2017

Tien-Ju Yang, et al. Designing energy-efficient convolutional neural networks using energy-aware pruning. CVPR. 2017

Jian-Hao Luo, et al. Thinet: A filter level pruning method for deep neural network compression. ICCV. 2017

Zhuang Liu, et al. Learning efficient convolutional networks through network slimming. ICCV. 2017.

Yihui He, et al. Channel pruning for accelerating very deep neural networks. ICCV. 2017.

Hao Li, et al. Pruning filters for efficient convnets. ICLR. 2017

Pavlo Molchanov, et al. Pruning Convolutional Neural Networks for Resource Efficient Inference. ICLR. 2017

2019

Jonathan Frankle, et al. The lottery ticket hypothesis: Finding sparse, trainable neural networks. ICLR. 2019.

Zhuang Liu, et al. Rethinking the value of network pruning. ICLR. 2019.

2020

Chaoqi Wang, et al. Picking winning tickets before training by preserving gradient flow. ICLR. 2020

Jonathan Frankle, et al. The early phase of neural network training. ICLR. 2020.

Haoran You, et al. Drawing early-bird tickets: Toward more efficient training of deep networks. ICLR. 2020.

Alex Renda, et al. Comparing rewinding and fine-tuning in neural network pruning. ICLR. 2020.

Jonathan Frankle, et al. Linear Mode Connectivity and the Lottery Ticket Hypothesis. ICML. 2020.

Pedro Savarese, et al. Winning the lottery with continuous sparsification. NIPS. 2020.

Fabric 部署系列实验

1
2
3
4
5
# 先进入到如下目录
/root/go/src/github.com/hyperledger

mkdir fabric_lab
cd fabric_lab

之后所有的实验都将在 fabric_lab 目录下进行。

cryptogenconfigtxgen 等加入到环境变量

1
2
3
4
5
6
7
8
9
10
11
12
# 使用export命令
export PATH=$PATH:/root/go/src/github.com/hyperledger/fabric/scripts/fabric-samples/bin
# export使用方法为 export PATH=$PATH:路径1:路径2:路径n
# $PATH为系统变量,表示之前所有设置的路径,如果不加则之前所有的路径都失效。所以必须加上。

# 另外一种方法:修改配置文件/etc/profile
# vi /etc/profile
# 在 /etc/profile 最后加入
# export PATH=$PATH:/root/go/src/github.com/hyperledger/fabric/scripts/fabric-samples/bin
# 修改好配置文件后执行
# source /etc/profile
# 使配置文件生效
人面不知何处去,桃花依旧笑春风。